
Evolutionary Unit Testing Of Object-Oriented Software Using A
Hybrid Evolutionary Algorithm

Stefan Wappler and Joachim Wegener

Abstract— Evolutionary algorithms have been successfully
applied in the area of software testing. However, previous
approaches in the area of object-oriented testing are limited
in terms of test case feasibility due to call dependences and
runtime exceptions. In this paper, we present a search-based
approach to automatically generating test cases for object-
oriented software. It relies on a tree-based representation of
method call sequences. Strongly-typed genetic programming
is employed to generate method call trees which respect the
call dependences among the methods. We apply a new kind
of distance-based fitness function that accounts for runtime
exceptions. In a case study, the approach outperformed random
testing in terms of achieved coverage and it produced test cases
achieving full branch coverage for a test object that makes
ample use of explicit runtime exceptions.

I. INTRODUCTION

The application of evolutionary algorithms to the area
of software testing has been of increasing interest to many
researchers over the recent past years. Evolutionary Testing
(ET) which aims at generating relevant test cases for a given
software unit by means of an evolutionary algorithm, has
been shown to be successful for different test objectives,
such as structural testing or temporal testing (e.g. [5]).
However, previous research has mainly concentrated on ET
approaches for procedural software. In consideration of the
growing importance of object orientation in present software
development, it is of particular interest to investigate the
applicability of evolutionary algorithms to the automatic
generation of object-oriented test cases from which software
development projects would benefit in terms of increased
efficiency and effectivity and hence of reduced development
costs.

This paper presents an approach to automatically gen-
erating relevant unit test cases for object-oriented software
by means of a hybrid evolutionary algorithm. The approach
applies a fitness function that accounts for runtime exception
which can occur when a candidate test case is evaluated.
A unit test case consists of a method call sequence and a
number of evaluation checks. The purpose of the method call
sequence is to use the given unit under test (typically a class)
in a particular scenario. After the method call sequence has
been executed, the evaluation checks examine whether the
system is in a valid state according to the test reference (e.g.
the specification). We propose a tree-based representation of

Stefan Wappler is with the Technical University of Berlin, Daimler-
Chrysler Automotive IT Institute, Ernst-Reuter-Platz 7, D-10587 Berlin,
Germany, phone: +49-30-39982-358, email: stefan.wappler@tu-berlin.de

Joachim Wegener is with DaimlerChrysler AG, Research and Technology,
Alt-Moabit 96a, D-10558 Berlin, Germany, phone: +49-30-39982-232,
email: joachim.wegener@daimlerchrysler.com

method call sequences which a strongly-typed genetic pro-
gramming algorithm is able to evolve using well-established
evolutionary operators. During fitness evaluation of a method
call sequence, we apply a genetic algorithm that modifies
the method call sequence in terms of parameter objects and
numeric parameter values. Furthermore, we introduce a new
distance metric based on method call sequences in order to
calculate the fitness of method call sequences that produce
runtime exceptions when being evaluated. For reasons of
simplicity and without loss of generality, we refer to Java
programming and focus on branch coverage for test goal
definition. We demonstrate the efficacy of our approach in
a case study using a test environment which allows for
the complete automation of the entire test case generation
process.

The paper is organized as follows: section II outlines unit
testing of object-oriented software and describes the nature of
object-oriented test cases. Section III explains why runtime
exceptions are problematic for fitness calculation. Section
IV presents our approach based on strongly-typed genetic
programming and a fitness function based on a hierarchical
distance metric. Section V contains a case study that we
performed for evaluating the approach. Finally, section VI
concludes the paper and gives some directions for further
research.

II. UNIT TESTING OF OBJECT-ORIENTED SOFTWARE

Unit testing is an activity that is usually performed in early
development stages in order to detect errors in the software
and to gain confidence in the correctness of the software
if no errors are found. In the context of object orientation,
a particular class which is part of the application to be
developed is considered to be a single unit for the test. The
idea of unit testing is to use the unit under test (UUT) in
interesting scenarios in order to detect erroneous behavior.
Since it is usually impossible to exercise the UUT in all
conceivable scenarios, an adequacy criterion such as branch
coverage or function coverage is used that decides which
scenarios are relevant. Indirectly, such a criterion is used as
a termination criterion for the process of test case generation:
if the entirety of test cases generated so far satisfies the
adequacy criterion, no more test cases need to be created.

Usually, the test of a single class involves the usage of
other classes, too. For instance, classes that appear in the
signatures of the methods of the class under test (CUT) are
required for the test of this class. The transitive set of classes
which are relevant for testing the CUT is called test cluster
for the CUT.

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

3193

Essentially, a unit test case for object-oriented software
comprises a method call sequence and one or more assertion
statements. The method call sequence (also referred to as
test program) represents a particular test scenario in which
objects (instances of the test cluster classes) that are needed
for the test are created and put into a particular state by
calling several instance methods for these objects. After
the execution of the method call sequence the assertion
statements check whether the system is in the expected state.
The use of a coverage-oriented adequacy criterion for testing
an object-oriented class requires test cases to be generated
that satisfy the criterion for each method of this class.
Consequently, a test case usually focuses on one particular
method, the method under test (MUT). Figure 1 shows the

class Controller
{
 public Controller(Config cfg)
 public void reconfigure(Config cfg)
 public Config getConfig()
 public void connect()
 public int retrieve(int signal)
 public void disconnect()
}

class Config
{
 public Config(int port, int count)
 public int getPort()
 public int getSignalCount()
}

Fig. 1. test cluster for class Controller

test cluster for class Controller which will be assumed
to be the CUT from now on (only the public interface is
shown). The test cluster consists of class Controller
and class Config. Class Config is used as a param-
eter type of the methods Controller(Config) and
Controller.reconfigure(Config) and is hence re-
quired for the test. Figure 2 shows a test case that focuses

// test scenario
Config cfg1 = new Config(0x0A, 5);
Config cfg2 = new Config(0x0B, 2);
Controller ctl = new Controller(cfg1)
ctl.reconfigure(cfg2);

// test evaluation
assert(
 ctl.getConfig().getPort() == cfg2.getPort());
assert(
 ctl.getConfig().getSignalCount() ==
 cfg2.getSignalCount());

Fig. 2. example test case for method A.ma2(B)

on the method Controller.reconfigure. The test
scenario consists of the creation of two instances of class
Config and one instance of class Controller where
one Config instance is used as the parameter object. After-
wards, method Controller.reconfigure(Config)
is called with the other instance of Config. Finally, the test
case checks whether the configuration of the controller is as
expected. If it is, the test passes, otherwise it fails.

III. RUNTIME EXCEPTIONS

In the context of Java programming, there are different
kinds of situations where exceptions occur. Exceptions serve
to indicate that the normal flow of control encounters a state
which makes it impossible to continue processing normally.
Additionally, exceptions provide the possibility of reacting
to these states appropriately. Many programming languages
offer the ability to explicitly produce a runtime exception,
e.g. in Java via a throw statement. Making use of this
ability is for instance reasonable in cases where a given file
name identifies a file that does not exist or where a provided
argument has an invalid value. Alternatively, some types of
exceptions are produced implicitly by the runtime system.
Such exceptions occur for instance during attempts to call a
method for a null object reference or attempts to access
an array position with an index that is larger than the array
size.

When using the goal-oriented approach in the context of
branch coverage, each branch of the class’s control flow
graphs becomes an individual test goal for which a test case
is searched. During the evolutionary search for a test case
that leads to the achievement of the current test goal (in
our case an individual branch of the class under test), a
runtime exception can occur that prematurely terminates the
execution of the current method call sequence. An exception
can occur in the following contexts:

1) The current target branch leads to an explicit throw
statement; this throw statement is reached and the
corresponding exception is thrown.

2) An exception occurs before the current target branch
can be traversed (regardless of whether or not the
current target branch leads to a throw statement).

While case 1 is unproblematic (a test case has been found
for the current test goal), case 2 is critical with respect to
fitness calculation. In the following, we will focus on the
second case.

class Controller
{ ...
 Signal[] signals;

 public Controller(Config cfg) {
 int sigCount = cfg.getSignalCount()
 signals = new Signal[sigCount];
 ...
 }

 public int retrieve(int signal) {
 if(signal < 0 || signal-1 > signals.length)
 throw new IllegalArgumentException();
 return signals[signal].value();
 }
}

Fig. 3. code fragment for class Controller

Figure 3 shows a fragment of the source code of the
Controller class. The class encapsulates an array con-
taining a number of Signal objects. The constructor
Controller(Config) initializes the size of this ar-
ray with the number of signals given by the Config

3194

object passed as argument to the constructor. Method
Controller.retrieve(int) serves to query the value
of a signal using the index signal to identify the rel-
evant signal. In case of an invalid signal index, this
method throws a runtime exception. Note that an excep-
tion would also be thrown even if the argument-checking
code and the explicit throw clause were not present; this
code makes the issue even more obvious (without the
checking code, an “array index out of bounds exception”
would be produced instead of an “illegal argument excep-
tion”). The test case shown in figure 4 shows a feasible

// generated test scenario
Config cfg1 = new Config(2103, 5);
Config cfg2 = new Config(31234, 132);
Controller ctrl1 = new Controller(cfg1);
ctrl1.retrieve(-173);
ctrl1.reconfigure(cfg2);

Fig. 4. test case for method Controller.reconfigure(Config)

method call sequence which aims at executing the method
Controller.reconfigure(Config). Although it is
feasible, an exception indicating that an invalid array ac-
cess has occurred will be produced when this sequence is
executed. This is due to the parameter value for signal
when calling method Controller.retrieve(int).
This value should be in the range of the signal array size.
In the case of figure 4, a valid index would be in the range
of [0, 4]. The exception leads to a premature termination of
the execution of the method call sequence. Consequently, the
current method under test is not executed.

The previous approaches in the area of object-oriented
evolutionary testing [7], [8], [3] make use of distance metrics
or coverage metrics based on monitored execution informa-
tion on the method under test when calculating the fitness of
a method call sequence. In the case of runtime exceptions
– if they do not belong to the current target or test goal
of the search – no adequate fitness value can be computed
that directs the search suitably. This is due to the fact that
no monitoring information will be created when the method
under test is not executed. Consequently, either the complete
approach fails in this case, or the search degenerates to a
random search if a constant penalty is used as the fitness
value for exceptional sequences.

IV. OUR APPROACH

This section outlines the hybrid evolutionary algorithm
that we use to generate test cases (section IV-A), presents
a tree-based representation of object-oriented unit test cases
(section IV-B), and describes in more detail the fitness
function that we apply (section IV-D).

A. Evolutionary Algorithm Design

As we will describe in section IV-B, we use trees in
order to represent method call sequences. These trees con-
tain the information of which methods should be called in
sequence, and which target objects and parameter objects
should be used for the individual method calls. Since the

tree representation does not support the reuse of objects for
multiple method calls, we must optimize the object assign-
ments during an additional optimization step. Additionally,
numeric basic type parameters are also optimized during
this additional optimization step. Hence, before evaluating
a tree individual, an evolutionary search is performed in
order to improve it and to acquire favorable parameter
values. Figure 5 outlines the test-case-generating evolution-
ary algorithm1. Initially, a population of tree individuals is

Tree Mutation

Tree

Initialization

Tree

Recombination

Tree Selection

Tree Evaluation

Object

Assignment &

Parameter

Optimization

Fig. 5. algorithm workflow

generated by random. For each individual, an evolutionary
search is performed to “fine-tune” the object assignments
and to generate numeric parameter values. The evaluation of
a tree individual consists of assigning the fitness of the best
individual of the parameter and object reference optimization
to the original tree individual. If an ideal individual is found
or another termination criterion applies, the search terminates
after fitness evaluation. Otherwise, promising tree individuals
are selected, recombined and mutated in order to create
preferably better ones.

B. Method Call Sequence Generation using strongly-typed
genetic programming

In section II, we described the structure of an object-
oriented test case. More formally, such a test case can be
understood as being a sequence S =< m1,m2, ...,mn >
of method calls mi ∈ M where M is the set of all public
methods of the test cluster classes. Typically, the methods
m1 to mn−1 create the objects that participate in the test and
put them into particular states. Finally, mn is the call of the
method under test. A method mi can only be executed if an
appropriate target object and all required parameter objects
for this call have been created in advance, i.e. during the calls
of m1 to mi−1. Obviously, call dependences exist among
the methods of M which must be taken into account when

1In [9], we considered the algorithm as being a two-level evolutionary
algorithm. The interpretation of the algorithm as a hybrid algorithm empha-
sizes more on the nature of the parameter and object assignment search as
some kind of lifetime learning (see VI).

3195

generating method call sequences. This also means that not
every arbitrary call sequence is feasible – only those which
regard all call dependences.

As described in more detail in [9], we use method call
trees for the representation of method call sequences in order
to ensure feasibility of the generated method call sequences.
These method call trees are acyclic directed subgraphs of
the extended method call dependence graph (EMCDG) of
the given test cluster. The EMCDG is a bipartite directed
multigraph which models the call dependences that exist
among the methods of the test cluster classes. Nodes of type 1
(method nodes) represent the methods, whereas nodes of type
2 (class nodes) represent the classes of the test cluster. A link
from a method node to a class node indicates that the method
can only be called if an instance of the class represented
by that class node is available. A link from a class node
to a method node means that the method represented by the
connected method node delivers an instance of the class. The
graph also assumes that each instance method of a class is in-
directly able to deliver an instance of that class – namely the
target object used by this method. Figure 6 shows the EM-

Ctrllr.reconfigure(Config)

Controller Controller(Config)

Config

Config(int,int)

Controller.getConfig()

Controller.connect()

Controller.disconnect()

Controller.retrieve(int)

Config.getPort()

Config.getSignalCount()

Fig. 6. extended method call dependence graph

CDG for the test cluster of figure 1. For example, if we want
to call method Controller.reconfigure(Config),
the graph indicates that we need to have an instance of
class Controller (used as target object), as well as an
instance of class Config (used as parameter object). The
dependence paths along the nodes, including the decisions
actually made at the class nodes as to which method should
be used for instance delivering, are represented by the method
call trees. A method call tree that results in calling method
Controller.reconfigure(Config) is shown in fig-
ure 7.

In order to employ strongly-typed genetic programming
(STGP), the function set and the type set must be defined
with respect to the test object at hand. The methods of the
test cluster classes constitute the function set. Each method
becomes an STGP function and is added to the function set
in the following way:

• The return type of the STGP function is defined as the
class to which the method belongs.

• The first child type of the STGP function is defined as
the class to which the method belongs, unless it is a

Controller.reconfigure(Config)

Controller(Config)

Config(int,int)

Config(int,int)

Controller.connect()

Fig. 7. example call tree for Controller.reconfigure(Config)

constructor or static method.
• Objective parameters of the method are defined as

additional child types of the STGP function.
• If the method returns an object, the method is inserted

twice into the function set, and the return type of the
second instance is defined as the actual return type of
the method.

The tree itself is typed using the particular type τ . Since a
call sequence aims at finally invoking the method under test,
the method under test is added to the function set again with
τ defined as the return type. This ensures that all generated
trees call the method under test at least once. Defining the
return type of the STGP functions as the class to which
the corresponding method belongs allows method calls to
be “concatenated”, and therefore makes it possible to have
multiple method invocations for the same object.

In order to take into account the polymorphic relationships
that exist due to inheritance relations, the STGP types are
specified in a way that reflects the type hierarchy of the test
cluster classes. We use set-based typing as implemented by
Luke [11]. A set type is a type identifier which is assigned a
set of type identifiers. Two types are considered compatible if
their type set intersection is non-empty. The overall type set
of an STGP problem consists of the atomic type identifiers
and the set types. Using set-based typing supports multiple
inheritance.

A method call tree is transformed into a call sequence
using in-order linearization. Figure 8 shows how the lin-
earized method call tree of figure 7 would look. In this
sequence, the types and automatically generated variable
names have already been inserted. In some cases, multiple

Config config1 = new Config(int,int);
Controller controller1 = new Controller(config1);
controller1.connect();
Config config2 = new Config(int,int);
controller1.reconfigure();

Fig. 8. linearized method call tree

instances are available which can serve as objects for a
particular method call. For instance, config1 could have
been used as the parameter object for the last method call
of the example sequence (parameter object in italic) instead
of config2. This “degree of freedom” with respect to the

3196

object assignments is dealt with during the object assignment
and parameter search. It is necessary to allow for object reuse
since the tree-based representation does not support object
reuse per se.

C. Object Assignment and Parameter Search

A set of variables can be derived from each method call
tree that represents the object assignments and numeric pa-
rameter values. These variables are optimized using a genetic
algorithm working on double vectors. For the example of
figure 8, the following variable vector V would be optimized:

V = (int, int, int, int, {1, 2})

where int is the range of signed integer values and the set
{1, 2} serves to select between the two candidate parameter
objects config1 and config2.

D. Fitness Evaluation

We employ a distance-based fitness function which ex-
presses how close execution of a test program is to reaching
the current test goal (the program element to be covered).
This closeness is expressed in terms of the three distances
method call distance dMC , control node distance dCN , and
local problem node distance dPN . The overall fitness f of
a test program is the sum of these appropriately weighted2

distances:
f = λdMC + dCN + dPN (1)

f ≥ 0 is a minimizing fitness function, 0 is the optimum.
The weight λ = |Pmax|+ 1 scales the method call distance
appropriately. |Pmax| is the number of control nodes of the
longest loop-free method control flow graph path of the test
cluster’s methods. The usage of λ ensures that λdmin

MC >
dmax

CN and dmin
CN ≥ dmax

PN holds where dmin
MC is the smallest

non-null method call distance, dmax
CN is the greatest control

node distance, dmin
CN is the smallest non-null control node

distance, and dmax
PN is the greatest problem node distance.

The metrics take into account runtime exceptions. In order
to do so, each works on a different level of granularity:

1) dMC on the method call level
2) dCN on the method control flow graph level
3) dCN on the problem node level
In the following, we will explain the distance metrics for

these three levels with the help of the example test case
shown in figure 4.

On the method call level, the distance metric dMC ex-
presses how close execution approached the method under
test in terms of number of methods. In case of a runtime
exception, execution of a method call sequence terminates
prematurely, meaning that the method under test is not
called. The number of methods which were not executed
due to an exception is the method call distance dMC . Let
S =< m1,m2, ...,ml > be a method call sequence, l = |S|
be the length of the sequence, and e ∈ {1, 2, ..., l} be the

2Since the fitness function returns exactly one real value, the individual
distances must be integrated into one value.

index of the method at which execution stops (either e = l or
me produced an exception). Then dMC is defined as follows:

dMC = l − e (2)

For the example test case (figure 4), the value of dMC would
be 1 since l = 5 and e = 4.

On the method control flow level, the distance metric
dCN expresses how close execution approached the target
node in terms of the number of control graph nodes of
the method that was called last. The distance between the
closest approach of the execution path and the target node
is measured. Figure 9 shows the control flow graph of

1

2

3

E

Fig. 9. control flow graph of method Controller.retrieve(int)

method Controller.retrieve(int). E denotes the
target node to be reached3 (in our case, E is the exit node
of the control flow graph). A branch is said to be critical
if it is impossible to reach the target once the control flow
has diverged down that branch. The node at which execution
takes a critical branch is referred to as the problem node. In
principle, each statement represented by a control node can
produce an exception4. Thus, each control node possesses
an additional critical branch (referred to as exceptional
branch), as indicated by the dashed arrows coming from
each control node. The distance dCN corresponds to the
metric approximation level ([10]). The value of dCN is equal
to the number of nodes that belong to the longest path
that starts at the problem node and aims at the target node
(excluding the target node). According the the example test
case, PE =< 1, 2 > is the execution path with respect to
method Controller.reconfigure(int). It contains
the control nodes 1 and 2. It turns out that node 1 is the
problem node since from there execution diverged along a
critical branch. The longest path from the problem node 1
to the target node E is the path P ∗

PN→E =< 1, 3 > for our
example; hence dCN = 1. The distance dCN is defined as
follows:

dCN = |P ∗
PN→T | (3)

where T is the current target node. If the considered control
flow graph belongs to the method under test, the target node

3When using branch coverage, empty statements are inserted for the
complementary branches of a condition if there is only one branch present
in the code. Consequently, instead of the branches of the control flow graph,
the control nodes are used as test goals.

4We assume this for reasons of simplicity. A static analysis can be carried
out in order to remove all non-branching safe nodes from the control flow
graph.

3197

T is the current test goal. Otherwise, T is the exit node of
the method at which execution terminated. In this case, dCN

expresses how close execution is from properly returning
from the current method call.

On the problem node level, the distance dPN expresses
how far execution is away from diverging along the branch
of the problem node which leads to the target. There are two
reasons why an undesired branch is taken:

• either the problem node is a branching node and the
condition of this node is evaluated unfavorably; hence,
the critical (not exceptional) branch is taken. Then, dPN

is proportional to the conditional distance dLD of the
problem node’s predicate according to the distance func-
tions used for testing procedural software ([10]). For
instance, the distance of an equality checking condition
if(a == b) is d= = (1+ε)−|a−b| with ε ∈ (0, 1).

• or execution from the problem node has diverged along
an exceptional branch. Since it is essentially unclear
how close most of the exceptions are from not being
raised, dPN is assigned the constant value 2 in this case.

Altogether, the problem node distance can be formulated as
follows:

dPN =

1
2dLD critical branch taken is

no exceptional branch

1 otherwise
(4)

where dPN ∈ [0, 1] and dLD ∈ [0, 1]. The factor 1
2 in

front of dLD is necessary to distinguish between the case
that either a condition has been evaluated unfavorably with
maximum distance or that an exception occurred. For gradual
exceptions – exceptions for which a gradual distance can also
be calculated such “as array index out of bounds exceptions”
– we use the gradual distance information instead of the
constant 1. This exceptional distance is mapped into the
interval (1

2 , 1].

V. CASE STUDY

In this section, we describe a case study which consists of
a comparison of our evolutionary approach to random testing.
The comparison to random testing aims at demonstrating
that an optimization is required for the generation of test
cases for some of the test goals. At first, we describe our
test environment used for experimentation. Afterwards, the
considered test object is characterized. Finally, the achieved
results are presented and discussed.

A. Test Environment

The approach presented in this paper was implemented in a
Java-based tool which makes use of third party toolboxes for
genetic programming and evolutionary algorithms. Off-the-
shelf genetic programming algorithms and structures were
used from the ECJ (Evolutionary Computation for Java)
system developed by Luke [4], [11]. Object assignment and
parameter optimization employed the Genetic and Evolution-
ary Algorithms Toolbox (GEATbx) provided by Pohlheim

[2]. The OpenJava framework [6] was used to parse and
instrument Java source code. A special OpenJava metaclass
has been implemented to enable branch coverage instrumen-
tation.

Figure 10 shows a high-level overview of the test case gen-
erator. Rectangular nodes represent active components, while
rounded nodes represent passive components (storages and
channels). The source code of the test cluster classes is parsed

OpenJava
test cluster

source code

instrumented

source code

method control

flow graphs

T
e
s
t
R
u
n
 M
a
n
a
g
e
r

ECJ

GEATbx

parameters for

current MUT

Linearizer

Test Program

Executor

tree

individuals

tree

fitnesses

p
ro
g
ra
m
s

p
ro
g
ra
m

fi
tn
e
s
s
e
s

vector

individuals

vector

fitnesses

Test Program

Builder

s
e
q
u
e
n
c
e
s

s
e
q
u
e
n
c
e

fi
tn
e
s
s
e
s

T
re
e
 O
p
ti
m
iz
a
ti
o
n

O
b
je
c
t
A
s
s
ig
n
m
e
n
t
&
 P
a
ra
m
e
te
r

O
p
ti
m
iz
a
ti
o
n

Fig. 10. test case generator system overview

and instrumented by the OpenJava framework. The control
flow graphs of the particular methods are constructed during
parsing, and serve as the basis for test goal definition. Hence,
the outcome of this preparation step is an instrumented
version of the classes and the method control flow graphs.
The Test Run Manager (TRMan) uses the graphs of the CUT
to derive the individual test goals. TRMan generates an ECJ
parameter file for each test goal and calls the ECJ system
which starts a GP optimization. The parameter file contains
the function set definition, the type set definiton, and general
optimization settings such as evolutionary operator selection.
The Linearizer takes the trees produced by ECJ, linearizes
them (as described in section IV-B) and hands them over to
the Test Program Builder (TPB). TPB identifies the optimiz-
able object assignments and parameters, and generates the
corresponding variable specification. Object assignment and
parameter search is carried out using GEATbx. The method
call sequence is modified according the values that this
toolbox delivers. The resulting programs are evaluated by the
Test Program Executor (TPE). TPE executes the programs
using the instrumented classes and monitors the execution
flow. It calculates the distance metrics (section IV-D) and
delivers the fitnesses back to TPB which forwards them to
GEATbx. TPB returns the overall best fitness achieved during

3198

object assignment and parameter search as the fitness of the
tree individual for which this search was carried out.

B. Test Object

The system described above has been used to carry out a
case study demonstrating the feasibility and efficacy of the
approach, particularly with respect to runtime exceptions.

public class Controller {
 protected final static int MAX_SIGNALS = 5;
 protected final static int MIN_PORT = 8000;
 protected final static int MAX_PORT = 8005;
 private Config cfg = null;
 private int[] signals = null;

 public Controller() {
 cfg = new Config(-1);
 signals = new int[cfg.getSignalCount()];
 }
 public void reconfigure(Config cfg) throws Exception {
 if(cfg.getSignalCount() > MAX_SIGNALS)
/*t1*/ throw new Exception("Too many signals.");
 if(cfg.getPort()<MIN_PORT || cfg.getPort()>MAX_PORT)
 throw new Exception("Invalid port.");
/*t2*/ this.cfg = cfg;
 signals = new int[cfg.getSignalCount()];
 }
 public int retrieve(int signal) {
 if(signal<0 || signal>signals.length-1)
 throw new IllegalArgumentException("Invalid signal.");
 return signals[signal]; }
 public Config getConfig() { return cfg; }
}

Fig. 11. source of class Controller

public class Config {
 private Vector signals;
 private int port;

 public Config(int port) {
 this.port = port;
 signals = new Vector();
 // base signal (clock)
 addSignal(0);
 }
 public void addSignal(int signalType) {
 signals.add(new Integer(signalType));
 }
 public int getSignalCount() { return signals.size(); }

 public int getPort() { return port; }

 public void setPort(int port) { this.port = port; }
}

Fig. 12. source of class Config

Figure 11 shows the source code of the class under test –
class Controller – and figure 12 shows the code of class
Config. Both classes constitute the test cluster.

Method Controller.reconfigure(Config) con-
tains two difficult test goals: test goal t1 which can only
be reached if there are more than 5 signals configured
(meaning that the test program must include at least 5 calls
to Config.addSignal(int)), and test goal t2 which
can only be reached if the specified port has a valid value
(meaning that either the constructor Config(int) or the
method Config.setPort(int) must be called with a
suitable parameter).

The following settings were used for the evolutionary
algorithm:

• ECJ: 1 subpopulation; 10 individuals per subpopula-
tion; initialization: half/full (17 max. tree depth); se-
lection: tournament; recombination: subtree crossover;
mutation: demotion and promotion [1], point mutation;
termination: at least after 10 generations;

• GEATbx: 4 subpopulations, 10 individuals per subpopu-
lation; initialization: random values; selection: stochas-
tic universal sampling; recombination: discrete; muta-
tion: real mutation; reinsertion: elitest with generation
gap 0.9; termination: at least after 50 generations or
if average best fitness over 15 generations does not
improve

C. Test Results

We ran the evolutionary test case generator for the given
test cluster in order to generate test cases satisfying branch
coverage. The set of generated test cases achieved full
(100%) branch coverage. During the search, 11966 test
programs were generated and evaluated. The resulting test
set contained 3 test cases. After that, we configured the
evolutionary algorithm to use random operators in order to
realize a random test case generator. We used this generator
to produce random test cases for the given test cluster.
According to the specified termination criteria, it stopped
after having evaluated 43233 test programs. In total, the
generated test cases achieve a coverage of 66%. No test cases
for the test goals t1, t2 and all dependent test goals were
produced.

The difficulty of generating a suitable test case for the test
goals does not only depend on the fact that either a special
numeric constant must be generated or a particular number of
calls to the same method must be made. Rather the search is
hindered by exceptions that occur when executing a method
sequence containing method calls which raise an exception
for many of the values of the parameters’ input domains. For
example, method Controller.retrieve(int) raises
an exception if the provided signal index is out of range.
This applies for most of randomly generated signal in-
dices. Figure 13 shows a generated test case for testing
method Controller.retrieve(int) (the parameters
to be optimized during parameter search are in italic).
The difficulty with this test case is to generate appropri-

Config config1 = new Config(int,int);
Controller controller1 = new Controller(config1);
controller1.retrieve();
controller1.retrieve();

Fig. 13. generated test case for method Controller.retrieve(int)

ate values for the parameters param1 and param2. In
order to cover the else branch of the first condition of
Controller.retrieve(int), both values must be 0.
Figure 14 illustrates the fitness landscape for this search.
Given this landscape, the genetic algorithm is guided to first
set the value of param1 to 0 and afterwards to set the value
of param2 to 0 as well. Consequently, the target branch will
be traversed by the corresponding test case.

3199

−1
−0.5

0
0.5

1

x 10
4

−1

−0.5

0

0.5

1

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

param1param2

fit
ne

ss

Fig. 14. fitness landscape for the example test case (λ = 3, ε = 0.0005)

The results achieved are promising. However, many more
experiments must be carried out for a more comprehensive
validation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach using a hybrid
evolutionary algorithm for the generation of method call
sequences. These sequences form the basis for creating
test cases for the unit testing of object-oriented software.
The hybrid evolutionary algorithm consists of a strongly-
typed genetic programming algorithm and a genetic algo-
rithm for parameter search. By using strongly-typed genetic
programming, feasibility of the method call sequences is
preserved throughout the entire search process. We described
a procedure for how to define the function set and the type
set of a standard STGP algorithm. Function set definition is
based on the signatures of the methods of the test cluster
classes. Type set definition is based on the inheritance rela-
tions of the test cluster classes. Polymorphism is supported
using set-based types. We defined a distance-based fitness
function which takes into account runtime exceptions. This
fitness function makes use of a distance metric that is based
on the number of unexecuted methods of a method call
sequence. Unlike previous approaches in this area, the search
is guided well in case of uncaught runtime exceptions. A
case study demonstrated the feasibility of the approach. In
an experiment, the approach outperformed random testing.
In contrast to random testing, full branch coverage could be
achieved completely automatically.

Further research particularly needs to investigate the prob-
lem node distance functions for operators specific to object-
orientation. For instance, the distance functions for object
address comparisons and for type checks must be improved.
Furthermore, it must be investigated how to deal with runtime

exceptions that are required to be raised in order to achieve a
subsequent test goal. Additionally, the way of covering non-
public methods is an item of consideration for future work.
Efficiency of the evolutionary algorithm could be improved
by “exchanging” the numeric parameter values among the
tree individuals: the numeric values that have been optimized
during parameter search can be stored within a tree individual
and hence will be available after tree recombination and
tree mutation. The parameter search for the offspring tree
individuals can use the numeric values as start values.

REFERENCES

[1] K. Chellapilla. A preliminary investigation into evolving modular
programs without subtree crossover. In Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages 23–31, 1998.

[2] Genetic and Evolutionary Algorithm Toolbox for use with Matlab.
http://www.geatbx.com.

[3] X. Liu, B. Wang, and H. Liu. Evolutionary search in the context
of object-oriented programs. In MIC2005: The Sixth Metaheuristics
International Conference, September 2005.

[4] S. Luke. Issues in Scaling Genetic Programming: Breeding Strate-
gies, Tree Generation, and Code Bloat. PhD thesis, Department of
Computer Science, University of Maryland, College Park, Maryland,
2000.

[5] P. McMinn. Search-based test data generation: A survey. Journal
on Software Testing, Verification and Reliability, 14(2):105–156, June
2004.

[6] M. Tatsubori, S. Chiba, M. Killijian, and K. Itano. OpenJava: A class-
based macro system for Java. Lecture Notes in Computer Science
1826, Reflection and Software Engineering, pages 117–133, 2000.

[7] P. Tonella. Evolutionary testing of classes. In ISSTA ’04: Proceedings
of the 2004 ACM SIGSOFT international symposium on Software
testing and analysis, pages 119–128, New York, NY, USA, 2004. ACM
Press.

[8] S. Wappler and F. Lammermann. Using evolutionary algorithms for the
unit testing of object-oriented software. In GECCO ’05: Proceedings
of the 2005 conference on Genetic and evolutionary computation,
pages 1053–1060, New York, NY, USA, 2005. ACM Press.

[9] S. Wappler and J. Wegener. Evolutionary testing of object-oriented
software using strongly-typed genetic programming. In GECCO ’06:
Proceedings of the 2006 conference on Genetic and evolutionary
computation, New York, NY, USA, 2006. ACM Press.

[10] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment
for automatic structural testing. Information and Software Technology,
43(1):841–854, 2001.

[11] G. C. Wilson, A. McIntyre, and M. I. Heywood. Resource review:
Three open source systems for evolving programs - lilgp, ecj and gram-
matical evolution. Genetic Programming and Evolvable Machines,
5(1):103–105, 2004.

3200

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

